This short note is designed to supplement the "early transcendentals" approach to calculus by giving a definition of exp(x) as a limit and computing its derivative. It is designed solely to provide complete details for the instructor. This proof is a bit easier than the usual proof because it uses powers of two instead of the positive integers in the definition of e^x as a limit.

Definition.

$$exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{2^n} \right)^{2^n}.$$
 (1)

Proposition. The limit in the definition above exists for all real numbers x and satisfies

$$exp(x + y) = exp(x)exp(y)$$

and

$$\frac{d}{dx}exp(x) = exp(x).$$

Lemma 1. For every real number x and every natural number n with $|x| < 2^{n-1}$, we have that

$$\left(1 + \frac{x}{2^{n-1}}\right)^{2^{n-1}} \le \left(1 + \frac{x}{2^n}\right)^{2^n} \le \frac{1}{\left(1 - \frac{x}{2^n}\right)^{2^n}} \le \frac{1}{\left(1 - \frac{x}{2^{n-1}}\right)^{2^{n-1}}}.$$
(2)

Proof. For $|x| < 2^{n-1}$,

$$\left(1 + \frac{x}{2^{n-1}}\right) \le \left(1 + \frac{x}{2^n}\right)^2 \quad \text{and} \quad \left(1 + \frac{x}{2^n}\right) \left(1 - \frac{x}{2^n}\right) \le 1. \tag{3}$$

These inequalities are proved by multiplying out the two products. Raising the first inequality in (3) to the power 2^{n-1} proves the first inequality in (2), and replacing x by -x proves the last inequality in (2). Raising the second inequality in (3) to the power 2^n proves the middle inequality in (2).

By Lemma 1, if $n \ge N$ and if $|x| < 2^N$ then $(1 + \frac{x}{2^n})^{2^n}$ is increasing in n and bounded by $(1 - \frac{x}{2^N})^{-2^N}$. Thus the limit in the definition exists. If $x = \varepsilon$, with $0 < |\varepsilon| < 1$, then setting n = 1 in the first and last inequalities of Lemma 1 and using induction we conclude

$$1 + \varepsilon \le \exp(\varepsilon) \le \frac{1}{1 - \varepsilon},\tag{4}$$

and hence for $\varepsilon > 0$,

$$1 \le \frac{exp(\varepsilon) - 1}{\varepsilon} \le \frac{1}{1 - \varepsilon},$$

and for $\varepsilon < 0$

$$1 \ge \frac{exp(\varepsilon) - 1}{\varepsilon} \ge \frac{1}{1 - \varepsilon}.$$

Thus

$$\lim_{\varepsilon \to 0} \frac{\exp(\varepsilon) - 1}{\varepsilon} = 1. \tag{5}$$

Lemma 2. For real numbers x and y,

$$exp(x + y) = exp(x)exp(y).$$

Proof. If $xy \ge 0$ and $2^n \ge |x| + |y|$, then

$$\left(1 + \frac{x}{2^n}\right)\left(1 + \frac{y}{2^n}\right) = \left(1 + \frac{x+y}{2^n} + \frac{xy}{2^{2n}}\right) \ge \left(1 + \frac{x+y}{2^n}\right).$$

Raising this inequality to the power 2^n and using (1) proves that $exp(x)exp(y) \ge exp(x+y)$. But also for $n \ge N$,

$$\left(1 + \frac{x+y}{2^n} + \frac{xy}{2^{2n}}\right) \le \left(1 + \frac{x+y + \frac{xy}{2^N}}{2^n}\right).$$

Raising this inequality to the power 2^n and using (1) again proves that

$$exp(x)exp(y) \leq exp(x+y+\frac{xy}{2^N}) \leq exp(x)exp(y)exp(\frac{xy}{2^N}).$$

Letting $N \to \infty$ we obtain, by (4), exp(x)exp(y) = exp(x+y) for all x, y satisfying $xy \ge 0$. If xy < 0, the inequalities just reverse, proving Lemma 2.

Finally we conclude the proof of the Proposition using Lemma 2 and (5):

$$\lim_{\varepsilon \to 0} \frac{exp(x+\varepsilon) - exp(x)}{\varepsilon} = \lim_{\varepsilon \to 0} exp(x) \frac{exp(\varepsilon) - 1}{\varepsilon} = \exp(x)$$

Further properties:

- i. Observe that exp(x) > 0 by Lemma 1, and exp(0) = 1. By the proposition exp(x) is a continuous, increasing function.
- ii. Let $\ln(x)$ denote the inverse function. Set e = exp(1) and note e > 2, by (4). By Lemma 2, $exp(n) = e^n$ for integers n, and so $\lim_{x \to +\infty} exp(x) = \lim_{n \to +\infty} e^n = +\infty$. Similarly $\lim_{x \to -\infty} exp(x) = 0$. Thus $\ln(x)$ is defined for all positive numbers x. Since exp(0) = 1, we have that $\ln(1) = 0$.
- iii. It follows from Lemma 2 that $\ln(xy) = \ln(x) + \ln(y)$.
- iv. For all rational numbers r and all real numbers a > 0,

$$a^r = exp(r \ln(a)).$$

proof of iv. By Lemma 2 and induction, if a>0 and if n is an integer, then $a^n=[exp(\ln a)]^n=exp(n\ln a)$. If m is also an integer, set $b=exp(\frac{n}{m}\ln a)$. Then $b^m=exp(m\cdot\frac{n}{m}\ln a)=a^n$, so that $a^{\frac{n}{m}}=b=exp(\frac{n}{m}\ln a)$.

We extend this fact about rational numbers $\frac{n}{m}$ to all real numbers by definition.

Definition. For real numbers x and a with a > 0, we define

$$a^x = exp(x \ln(a)).$$

In particular, $e^x = exp(x)$.

By Lemma 2, $a^{x+y} = a^x a^y$.

Corollary.

$$\frac{d}{dx}a^x = a^x(\ln a)$$
 and $\frac{d}{dx}\ln(x) = \frac{1}{x}$

Proof.

$$\frac{a^{x+h} - a^x}{h} = a^x \left(\frac{a^h - 1}{h}\right) = a^x \left(\frac{e^{h \ln a} - 1}{h \ln a}\right) \ln a.$$

Now let $h \to 0$ and apply (5). To find the derivative of $\ln x$, write

$$\lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h} = \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{exp(\ln(x+h)) - exp(\ln(x))} = \frac{1}{exp(\ln(x))} = \frac{1}{x}.$$

The quantity in the second limit is the reciprocal of a difference quotient for the derivative of exp at the point $\ln x$.

D. Marshall January 2012