This short note is designed to supplement the “early transcendentals” approach to calculus by giving a
definition of exp(x) as a limit and computing its derivative. It is designed solely to provide complete details
for the instructor. This proof is a bit easier than the usual proof because it uses powers of two instead of
the positive integers in the definition of €* as a limit.

Definition.

exp(z) = lim (1+ %)2 (1)
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Proposition. The limit in the definition above exists for all real numbers = and satisfies

exp(x +y) = exp(x)exp(y)

and
d

. exp(z) = exp(x).

Lemma 1. For every real number x and every natural number n with |z| < 2"~ we have that
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Proof. For |z| < 271

<1+2n—a’_1)§ (1+2in>2 and <1+2%><1—2%>§1. (3)

These inequalities are proved by multiplying out the two products. Raising the first inequality in (3) to the
power 2"~ 1 proves the first inequality in (2), and replacing x by —x proves the last inequality in (2). Raising
the second inequality in (3) to the power 2" proves the middle inequality in (2). O

By Lemma 1, if n > N and if |z < 2V then (14 £%)?" is increasing in n and bounded by (1 — QLN)_QN.
Thus the limit in the definition exists. If x = e, with 0 < || < 1, then setting n = 1 in the first and last
inequalities of Lemma 1 and using induction we conclude

1+E§exp(a)§1_ , (4)

and hence for € > 0,
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Lemma 2. For real numbers x and y,

exp(r +y) = exp(x)exp(y).
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Proof. If zy > 0 and 2™ > |z| + |y|, then
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Raising this inequality to the power 2™ and using (1) proves that exp(z)exp(y) > exp(z + y). But also for

n> N,
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1 — |I< |14+ —F .

Raising this inequality to the power 2™ and using (1) again proves that
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exp(x)exp(y) < exp(x +y + Q—N) < ewp(w)ewp(y)ewp(Q—N)-

Letting N — oo we obtain, by (4), exp(x)exp(y) = exp(x + y) for all z,y satisfying xy > 0. If xy < 0, the
inequalities just reverse, proving Lemma 2. O

Finally we conclude the proof of the Proposition using Lemma 2 and (5):

lim exp(x +¢e) — exp(x) ~ Jim exp(a) exp(e) — 1

e—0 € e—0 €

= exp()

Further properties:

i. Observe that exp(z) > 0 by Lemma 1, and exp(0) = 1. By the proposition exp(zx) is a continuous,
increasing function.

ii. Let In(x) denote the inverse function. Set e = exp(1) and note e > 2, by (4). By Lemma 2, exp(n) = ™
for integers n, and so limg_, 1o exp(x) = lim, o0 €™ = +00. Similarly lim, ,_ exp(xz) = 0. Thus
In(x) is defined for all positive numbers . Since exp(0) = 1, we have that In(1) = 0.

iii. Tt follows from Lemma 2 that In(zy) = In(x) + In(y).

iv. For all rational numbers r and all real numbers a > 0,

a” = exp(rin(a)).

proof of iv. By Lemma 2 and induction, if a > 0 and if n is an integer, then a” = [exp(lna)]™ =
ezp(nlna). If m is also an integer, set b = ezp(Z Ina). Then b™ = exp(m - L 1na) = a”, so that aw = b=
exp(Ina). O

We extend this fact about rational numbers ;- to all real numbers by definition.

Definition. For real numbers x and a with a > 0, we define

x

a® = exp(zln(a)).

In particular, e* = exp(z).

By Lemma 2, a®*Y = a%aV.

Corollary.
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Now let h — 0 and apply (5). To find the derivative of ln z, write

. In(z+h) —In(z) ) In(z + k) — In(x) 1 1
lim = lim = = —.
h—0 h h—0 exp(In(z + h)) — exp(ln(z))  exp(ln(x)) =
The quantity in the second limit is the reciprocal of a difference quotient for the derivative of exp at the
point In . O
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